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Received: 28 April 2000 / Revised version: 6 July 2000
Communicated by P. Schuck

Abstract. We extend the recently presented formalism for Monte Carlo calculations of the partition func-
tion, for both even and odd particle number systems (Phys. Rev. C 59, 2500 (1999)), to the calculation of

many-body matrix elements of the type 〈ψ|e−βĤ |ψ〉 where |ψ〉 is a many-body state with a definite angular
momentum, parity, neutron and proton numbers. For large β such matrix elements are dominated by the
lowest eigenstate of the many-body Hamiltonian Ĥ, corresponding with a given angular momentum parity
and particle number. Emphasis is placed on odd-mass nuclei. Negligible sign fluctuations in the Monte
Carlo calculation are found provided the neutron and proton chemical potentials are properly adjusted.
The formalism is applied to the Jπ = 0+ state in 166Er and to the Jπ = 9/2−, 13/2+, 5/2− states in
165Er using the pairing-plus-quadrupole model.

PACS. 05.30.-d Quantum statistical mechanics – 02.70.Lq Monte Carlo and statistical methods – 21.60.Ka
Monte Carlo models

1 Introduction

A fundamental problem in nuclear physics is the calcula-
tion of observables associated with exact eigenstates of in-
teracting many-particle systems using Monte Carlo meth-
ods.

Recently a formalism to compute the fermionic parti-
tion function using Monte Carlo methods for Hamiltoni-
ans containing pairing terms has been introduced (ref. [1])
which is equally applicable to even and odd numbers of
particles. The formalism is based on a functional inte-
gral expression of the partition function containing pair-
ing fields. The physical content of the partition function is
intrinsically statistical. The only eigenstate of the Hamil-
tonian reachable via the partition function is the ground-
state (as the temperature tends to 0). However, because
of the very small level spacing in heavy nuclei, extremely
large values of β = 1/T are required. The situation con-
siderably improves if the partition function with a definite
value of the angular momentum and parity is considered.
Here, we discuss a method of computing matrix elements
of the type

B = 〈ψ, J,M, π,N,Z|e−βĤ |ψ, J,M, π,N,Z〉 , (1)

where |ψ〉 is a trial many-particle state having a
given angular momentum, parity and particle numbers

a e-mail: giovanni.puddu@mi.infn.it

J,M, π,N,Z. Computation of the above matrix elements
allows the calculation of the lowest-energy levels of a given
angular momentum and parity. We present this method
not as an alternative to the method of angular momen-
tum projected partition function but simply as an ad-
ditional possibility. For large β, B is determined solely
by the lowest state of a given angular momentum and
parity. It should be mentioned that the large-scale shell-
model method using a quantum Monte Carlo diagonaliza-
tion technique (ref. [2]) is capable of giving information
on the low-lying part on the energy spectrum in many-
particle systems.

With the availability of ever faster computers, the
study of quantal systems with stochastic Monte Carlo
integration techniques is becoming increasingly powerful
(see for example ref. [3]).

The ideas implemented in this work differ from the
methods used in ref. [4], where angular-momentum pro-
jection (without parity projection) is implemented only
approximately with the cranking method. Here we use a
functional integral method which is exactly angular mo-
mentum and parity projected from the start. The angular
momentum and parity projection is not, as usually done,
carried out with the familiar angular-momentum projec-
tors, but rather with the choice of the the trial wave func-
tions which have good angular momentum and parity. To
the author’s knowledge, this idea was never used before
for Monte Carlo calculations.
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If the pairing interaction has a large effect, the meth-
ods of ref. [4], used to determine the canonical partition
function, give strong sign fluctuations in the case of an
odd number of particles and small sign fluctuations for an
even number of particles ( although these sign fluctuations
are absent in the grand canonical partition function and
in the ground state). The reason for this effect is the sign
of the real parts of the eigenvalues of the evolution op-
erator appearing in the functional integral in the density
decomposition. In order to make this obvious consider the
functional integral expression for the canonical partition
function in the density decomposition, which schemati-
cally we write as

Z =
∫

dσG(σ)TrÛ ,

where we called σ the integration variables, G is the Gaus-
sian weight and Û is the evolution operator which depends
on the integration variables. Consider any contribution to
this integral and let x1, x2, ..., the largest eigenvalues of
the first quantized evolution operator associated with Û .
To a very good approximation, especially at low temper-
ature, the trace of the second quantized evolution oper-
ator (i.e. the one for N particles) is given by x1x2...xN .
Since the eigenvalues come in complex conjugate pairs,
this quantity is positive for an even number of particles.
For an odd number of particles the sign of the trace is the
sign of the real part of the unpaired eigenvalue xN . If the
pairing force is strong, this sign can be negative with large
probability (see ref. [5] for a detailled discussion). Thus we
would like to construct a formalism which can be applied
both to an even and odd particle number and is angular
momentum and parity projected. This is precisely the goal
of the method we propose in this work. An accurate eval-
uation of the matrix elements of eq. (1) gives information
about the spectrum of the many-body Hamiltonian.

It should be stressed that another ingredient of the
method we propose is the use of a trial Gaussian density
distribution for the computation of the functional inte-
gral itself. This is different from the Metropolis method
usually employed in Monte Carlo calculations. The main
reason for using this method, which is discussed later in
this work, is that the approximations commonly used in
nuclear physics (mean-field and RPA) can be derived by
approximating the integrand in the functional integral,
with a Gaussian around the mean field (the highest value
of the integrand). Therefore it is reasonable to use such
approximations as a trial probability density to compute
the full functional integral. As discussed later, much of
the computational effort goes in the construction of such
a trial probability density . Although intrinsically less ac-
curate than the Metropolis methods, the Monte Carlo in-
tegration performed with these trial probabilbity densities
can be a few orders of magnitude faster since this method
does not require the computationally expensive number of
decorrelation steps necessary in the Metropolis method to
guarantee the statistical independence of the the sample.

Methods for the computation of matrix elements, as in
eq. (1), can be particularly useful for odd-even and odd-

odd nuclei. Of course much relies on the expression for the
trial state |ψ〉 one adopts. A good choice allows small val-
ues of β, but a poor choice of the trial state would require
large values of β. Matrix elements are amenable to Monte
Carlo calculations with small sign fluctuations; this seems
to be the case in the examples discussed below for odd-
even nuclei using the pairing+quadrupole force. Although
calculations were not performed, this is very encouraging
also for odd-odd nuclei, since sign fluctuations in the for-
malism of ref. [1] do not depend on whether the particle
number is even or odd. The outline of this paper is the
following. In section 2 we present the formalism for the
computation of the matrix elements. In subsections 2.1
and 2.2 specific cases are discussed in detail. In subsec-
tion 2.3 the phase ambiguity associated with the gener-
alized quasi-particle formalism is discussed. In section 3
we discuss some examples with Monte Carlo calculations;
the limitations of the present implemetation are also dis-
cussed. In section 4, we present some conclusions.

2 The functional integral expression for
matrix elements B
The Hamiltonian we consider in the next section, as a
numerical example, is the Pairing+Quadrupole Hamilto-
nian. Since the formalism does not depend on the details
of the Hamiltonian, we consider such a model. In order to
simplify the formulae we shall consider one particle type
although the numerical calculations have been performed
including both neutron and proton degrees of freedom.
The Hamiltonian used is (ref. [6])

Ĥ = Ĥ0 − k

2

2∑
a=−2

(−1)aQ̂(2)
−aQ̂

(2)
a −GP̂ †P̂ , (2)

where Ĥ0 =
∑Ω

i=−Ω Eia
†
iai is the single-particle Hamil-

tonian, Q̂(2)
a =

∑
i,j(q

(2)
a )ija

†
iaj (for a = −2, .., 2) are the

spherical components of the quadrupole operator and P̂ =∑
i>0 aiai is the monopole pairing operator. The label

i > 0 denotes a single-particle orbit njm, and i refers to its
time reversed orbit, defined as |njm〉 = (−)j+1/2|nj−m〉.
The total number of single-particle states is Ns = 2Ω. The
pairing operator is of the form

P̂ =
1
2
a†Pa† , (3)

where P is an antisymmetric matrix in the single-particle
indices. As in ref. [1], the details of the pairing matrix P
as well as of the quadrupole force are irrelevant for the
purpose of introducing the formalism. In what follows Q̂a

(a = −2,−1, 0, 1, 2) are the Cartesian components (i.e.
the real and imaginary parts) of the quadrupole operator
in (2). In the following we consider rather than e−βĤ ,
the operator e−βĤ+αN̂ Let β = εNt, then the Hubbard-
Stratonovich transformation (ref. [7]) gives the following
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expression for the evolution operator e−βĤ+αN̂ (cfr. ref.
[1]):

e−βĤ+αN̂ = e−βGΩ/2N
∫ Nt∏

n=1

(dφxndφyn

×
2∏

a=−2

dσan)e−
ε
2k

∑
an σ2

an−εG
∑

n(φ2
xn+φ2

yn)Û , (4)

where Û is the evolution operator

Û = ÛNt
ÛNt−1...Û1 , (5)

Ûn = e−ε[Ĥ′
0−k

∑
a σanQ̂a−G(φnP̂+φ�

nP̂
†)] , (6)

with φn = (φxn + iφyn). In eq. (6) Ĥ ′
0 = Ĥ0 − qN̂ and

q = µ−G/2 (µ = α/β). N is the normalization constant

N =
( εk
2π

) 5Nt
2

(εG
π

)Nt
.

Equation (4) becomes exact in the limit ε → 0. We
preferred this functional integral since its mean-field (i.e.
the time-independent values of the integration variables,
which give the highest integrand in eq. (4)) describes the
familiar Hartree-Bogoliubov mean field. This functional
integral was also used in ref. [8] and is a particular case of
the more general class of functional integrals described in
ref. [9].

Second quantized operators are denoted with capitals
with a carret and their corresponding first quantized oper-
ators with small letters, for example Q̂a =

∑
rs(qa)rsa

†
ras.

As discussed in ref. [1], the chemical potential µ is adjusted
so that sign fluctuations are supressed.

Inserting eq. (4), in eq. (1) one derives, for A particles,

B = e−βGΩ/2N
∫ Nt∏

n=1

(dφxndφyn

×
2∏

a=−2

dσan)e−
ε
2k

∑
an σ2

an−εG
∑

n(φ2
xn+φ2

yn)e−αA

× 〈ψ, J,M, π,A|Û |ψ, J,M, π,A〉 . (7)

In order to compute eq. (7) one needs matrix elements
of the type

〈ψ, J,M, π,A|Û |ψ, J,M, π,A〉 ,

with Û given by eq. (5) and (6). As in ref. [1] , we make
use of the general quasi-particle formalism of ref. [10].

The operator Û in eq. (7) conserves neither particle
number nor angular momentum, while the original many-
body matrix element in eq. (1) does . The restoration of
conserved quantum numbers is therefore achieved after
the functional integration is performed. This implies that
spurious particle number and angular momentum violat-
ing components in Û have to be cancelled statistically. If

we decompose Û in its spherical tensor components, only
its scalar part is physically meaningful (this is obvious
from eq. (4) since the result of the integral is a scalar).
Higher angular momentum tensor components in Û must
give 0 after the integration is performed. Therefore, it is
desirable to cancel all spurious particle number and an-
gular momentum components in (7) before the integra-
tion. Non-zero angular momentum components in Û are
cancelled simply by considering the following matrix ele-
ments:

B =
∑
M

1
2J + 1

× 〈ψJ,M, π,A|Û |ψ, J,M, π,A〉 , (8)

instead of the matrix elements eq. (7). The expression for
B then becomes

B = e−βGΩ/2N
∫ Nt∏

n=1

(dφxndφyn
2∏

a=−2

dσan)

× e−
ε
2k

∑
an σ2

an−εG
∑

n(φ2
xn+φ2

yn)e−αA B . (9)

Exact particle number is preserved if the trial states
have good particle number (see below). If this is not the
case, one has to insert particle number projectors ℘A
(|JMπA〉 = ℘A|JMπ〉) in eq. (8), thus

B =
∑
M

1
2J + 1

〈J,M, π|℘AÛ℘A|J,M, π〉 . (10)

This is the expression (modified to account for two par-
ticle types) that has been computed in the Monte Carlo
calculation discussed in section 3.

Usually one constructs trial states with good an-
gular momentum by projecting the desidered angular-
momentum component from a state which breaks rota-
tional invariance (see for ex. ref. [11]). Here we take a dif-
ferent approach, by only using angular-momentum eigen-
states. Consider the following state with an even particle
number:

|ψ〉 = Ĉ|0〉 = e
1
2a

†Xa† |0〉 , (11)

in which |0〉 is the particle vacuum and X is an anti-
symmetric matrix in the space of single-particle indices
(a†Xa† = a†iXija

†
j). Let us take the simple case of X given

by a combination of Clebsh-Gordan coefficients which cou-
ple the particle operators to zero angular-momentum 1,
i.e.

a†Xa† =
∑
i

fi[a
†
ji
× a†

ji
](0), (12)

which is a linear combination of zero angular-momentum
coupled pairs constructed in each subshell. The state in

1 Actually these Clebsh-Gordan coefficients are modified by
the following phase factor in the definition of the time-reversed
partner of |jm〉, since a†

jm
= (−1)j+1/2a†

j−m
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eq. (11) then carries angular momentum zero and positive
parity. Higher angular momenta and/or different parity
can be constructed by considering states like

|ψ〉 = gkh[a
†
k × a†h]

(J)
M e

1
2a

†Xa† |0〉
+ gkhk′h′ [[a†k × a†h]

(J ′) × [a†k′ × a†h′ ](J
′′)](J)

× e
1
2a

†X′a† |0〉 + ... .

For an odd particle number one can take combinations
of |odd〉 = a†k|even〉 with the appropriate C-G coefficients
to ensure good rotational invariance. Ideally one should
choose the coefficients appearing in the trial states vari-
ationally so as to maximize the overlap with the exact
eigenstates of the starting two-body Hamiltonian. In the
example discussed in the next section we simply take

|0+〉 = e
1/2

∑
jm a†

jma†
jm |0〉 ,

for 0+ state of even-even systems and a†jm|0+〉 for the trial
state with an odd particle number. No attempt is made
here to fix the coefficients fk in eq. (12) optimally . These
coefficients can be determined using variational methods.

To ensure a proper particle number, these states are
particle number projected as explained below. Since the
operator Û in eq. (8) does not conserve particle number,
the projection in eq. (8) must be done both at the left
and at the right of Û . Thus, in this scheme, both particle
number and angular momentum projections are taken care
of with a double particle number projection.

To appreciate how crucial these projections are in or-
der to suppress sign fluctuations in Monte Carlo calcula-
tions, let us mention that for the quadrupole-quadrupole
Hamiltonian (Û in this case does not change particle num-
ber) a single-particle number projection is sufficient to
fix both angular momentum and particle number, in this
scheme, and the resulting functional integral behaves very
well from the point of view of the Monte Carlo integration;
however a single particle number projection, if pairing is
included, gives rise to very strong sign oscillations of the
integrand in the functional integral. This is not surprising
since spurious particle number components in the matrix
element B have to be cancelled out by the integration.

The operator ℘A which projects the component having
A particles is

℘ =
1

2πi

∫ 2πi

0

dα eα(N̂−A) .

Hence the matrix elements to be studied are (zp,q =
eαp,q )

B′(zp, zq) =
1

2J + 1

×
∑
M

〈ψ, J,M, π|eαpN̂ ÛeαqN̂ |ψ, J,M, π〉 , (13)

and eq. (8) becomes

B = (2πi)−2

∫ 2πi

0

dαpdαqB′(zp, zq)e−(αp+αq)A . (14)

In the case of a single-particle number projector (say
αq = 0) it is possible to decompose eq. (13) into a poly-
nomial of eαp using recursion relations, as done in ref. [1],
for the calculation of the partition function. In the case
of double-particle number projection, for an even parti-
cle number, one of the integrals over α in eq. (14) can be
carried out in a similar way using recursion relations in a
numerically stable way. For an odd particle number, we
prefer a direct numerical integration over αp and αq in or-
der to compute the A-particle matrix elements in eq. (10)
from eq. (13) and (14) (this is actually computationally
expensive, but rather stable from a numerical point of
view).

In the present paper we consider matrix elements
B′(αp, αq) for the following forms of trial states:

Case 1) |ψ〉 = e
1
2a

†Xa† |0〉,
Case 2) |ψ〉 = a†ke

1
2a

†Xa† |0〉.
More complicated cases like [a†×a†](0)|Case1〉 will not

be considered, although the technique which will be used
in case 1) and case 2) can be implemented also in this
case.

The technique employed makes use of the formalism
described in ref. [1] and ref. [10]. In what follows γc =
col(a, a†) is a column vector consisting of all annihilation
and all creation oparators, γr is the corresponding row
vector and γr = (a†, a) and γc = col(a†, a). Every operator
of the form

K̂ = ea
†R11a+

1
2 [aR21a+a†R12a

†] , (15)

can be rewritten as

K̂ = e
1
2γrRγc−1/2trR22 , (15′)

where R is a 2Ns×2Ns matrix which can be obtained, by
inspection, from eq. (15) and R22 = −R̃11. In particular,
every evolution operator at a given time interval n, Ûn

(see eq. (6)) can be rewritten as

Ûn = CnŴn , (16)

with

Ŵn = e
1
2γrRnγc . (17)

The matrix Rn and the complex number Cn can be ob-
tained, by inspection of eq. (6). The matrix elements we
wish to calculate are of the type

B′(zp, zq) =
C

2J + 1

∑
M

(zpzq)Ns/2

×〈ψJMπ|e1/2αpγrNγcŴe1/2αqγrNγc |ψJMπ〉 , (18)

=
C

2J + 1

∑
M

B′′(zp, zq) ,

with

C =
∏
n

Cn , (19)
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Ŵ = ŴNt
ŴNt−1...Ŵ2Ŵ1 . (20)

N in eq. (18) is the matrix

N =
(

1 0
0 −1

)
. (21)

Thus we need to give prescriptions for the calculation of
the following matrix elements:

(Case1) B′′(zpzq) = (zpzq)Ns/2

×〈0|Ĉ†e1/2αpγrNγcŴe1/2αqγrNγcĈ|0〉, (22)

(Case2) B′′(zpzq) = (zpzq)Ns/2

×〈0|akĈ†e1/2αpγrNγcŴe1/2αqγrNγcĈa†k|0〉, (23)

with Ĉ given by eq. (11). We now make use of the group
properties satisfied by the exponentials of quadratic forms
in the creation and anihilation operators (ref. [10]). These
properties state that, if

Ŵ1 = e1/2γrR1γc , (24a)

Ŵ2 = e1/2γrR2γc , (24b)

then
Ŵ = Ŵ2Ŵ1 = e1/2γrRγc , (24c)

with the matrix R given by

eR = eR2eR1 . (24d)

That is, to the operators Ŵn, as in (17), there are asso-
ciated matrices Wn = eRn which have the same group
multiplication law. In order to compute products of evo-
lution operators one has to compute the product of their
associated matrices and then evaluate its logarithm. The
matrix associated with Ĉ, defined in eq. (11), is

C =
(

1 X
0 1

)
, (25)

and to Ĉ† (we choose X real)

D =
(

1 0
−X 1

)
. (26)

In the next three subsections we shall treat separately case
1) and case 2) and the problem of the determination of the
sign of the matrix elements B′′ defined by (22) and (23).

2.1 Case 1)

In ref. [10] it is proven that for any operator of the form
(15′) the vacuum expectation value of any operator K̂ of
the class of eq. (24) is given by

〈0|K̂|0〉 = s[det(K22)]1/2 . (27)

This expression is defined up to a sign s = ±1 which will
be discussed in detail in section 2.3. K22 in eq. (27) is the
(2, 2) submatrix of the matrix K associated with K̂. For
compactness let

P̂p,q = e1/2αp,qγrNγc . (28)

We now have to compute the vacuum expectation value
of the operator (see eq. (22))

Ŵ ′ = Ĉ†P̂pŴ P̂qĈ . (29)

Let W ′ be the matrix associated with Ŵ ′. The multipli-
cation law of eq. (24) gives

W ′ = D

(
zp 0
0 1/zp

)
W

(
zq 0
0 1/zq

)
C , (30)

and W is the matrix associated with Ŵ of eq. (20) and C
and D are given in eqs. (25) and (26). Thus, using eq. (27)
and extracting the (2, 2) submatrix, we obtain

B′′(zp, zq) = (zpzq)Ns/2〈0|Ŵ ′|0〉 =

s(zpzq)Ns/2[detW ′
22]

1/2 = s[det(−z2
pz

2
qXW11X

−z2
pXW12 + z2

qW21X +W22)]1/2 . (31)

It is obvious that s does not depend on zp, zq. In fact
B′′ must be a polynomial in z2

p and z2
q (the trial state

contains only an even particle number), therefore B′′ and
also s must be continous functions of zp, zq; since s = ±1,
s cannot depend on the values of zp,q. In particular s can
be determined from

B′′(zp = 0, zq = 0) = s[detW22]1/2 = 〈0|Ŵ |0〉 . (32)

The matrix element 〈0+A|Ŵ |0+A〉 (for A particles), is
the coefficient of (zpzq)A in the polynomial expansion of
eq. (31). The simplest way to extract 〈0+A|Ŵ |0+A〉 is to
evaluate

〈0+A|Ŵ |0+A〉 =

(2πi)−2

∫ 2πi

0

dαpdαqB′′(zp, zq)/(zpzq)A . (33)

This is not the least expensive way (it requires the
computation of a large number of determinants). A faster
method can be obtained using the following reasoning. Let
us rewrite the determinant in eq. (31) as

(B′′)2 = det(z2
pU(zq) + V (zq)) =

detV (zq) det[1 + z2
pU(zq)V (zq)−1] =

detV (zq) det[1 + z2
pY (zq)] . (34)

The matrices U and V can be read from eq. (31), and
Y is defined by the above. The coefficients in the poly-
nomial expansion of det[1 + z2

pY (zq)] in powers of z2
p can

be obtained with recursion relations as in ref. [1] (cfr. eq.
(41)-(44) of ref. [1] ). Since also the square root of the
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determinant has to be a polynomial in z2
p and z2

q , it fol-
lows that the eigenvalue spectrum of Y in (34) consists
of degenerate doublets for all values of zq. These degen-
eracy properties are essential if we are to compute the
square root of these determinants. Similarly, since the ma-
trix V (zq) is of the type z2

qA + B (with A and B being
matrices), it can be rewritten in the form B(z2

qB
−1A+1).

For zp = 0 the right-hand side of (34) has to be a polyno-
mial in z2

q , therefore all eigenvalues of B−1A have to be
degenerate. The criterion for numerical stability, adopted
in this work, is that these degeneracy properties be pre-
served to a reasonable accuracy. Let ξn(z2

q ) be the coeffi-
cient of z2n

p in det(1 + z2
pY )1/2 (which can be computed

with the afore-mentioned recursion relations), then

B′′s = [detV (zq)]1/2
∑
n

z2n
p ξn(z2

q ) . (35)

Then it follows that we need only to perform the inte-
gral over αq in order to complete the projection of B′′ in
eq. (33).

In this discussion we have assumed that all matrices
can be computed accurately. This is actually not so: as
β becomes larger and larger, some eigenvalues of the evo-
lution operator in the functional grow exponentially. The
problem can be cured using the root method, introduced
in ref. [1] , with some modifications to allow for the dou-
ble particle number projection. The method consists in
working with a decomposition Ŵ = ŴbŴa... so that each
factor of the evolution operator is not exponentially large.
Consider the case Ŵ = ŴbŴa. In ref. [1] it is shown that
the vacuum expectation value of an evolution operator,
which in our case is Ŵ ′ (eq. (29)), is equal to

〈0|Ŵ ′|0〉 = sdet

(
A

(a)′

11 A
(a)′

12

W
(b)′

21 W
(b)′

22

)1/2

, (36)

where A(a)′

i,j are the submatrices of (W (a)′)−1 and W (a)′

W (b)′ are the matrices associated with the operators Ŵ ′
a

and Ŵ ′
b with Ŵ ′ = Ŵ ′

bŴ
′
a and

Ŵ ′
b = Ĉ†P̂pŴb , Ŵ ′

a = ŴaP̂qĈ .

It is not difficult, although tedious, to apply the same
reasoning, as done in eqs. (34)-(36). One can easily deter-
mine the matrices A(a)′

i,j of eq. (36) because the inverse of
the matrix W ′ is given by (ref. [10])

W
′(−1) =

(
0 1
1 0

)
W̃ ′

(
0 1
1 0

)
. (37)

It then becomes easy to determine the matrix coefficients
of z2

p and z2
q in the argument of determinant of eq. (36).

Once these matrices are known one can repeat the consid-
erations leading from eq. (31) to eq. (34).

2.2 Case 2)

In ref. [10] it is proven that every operator K̂ of the class
(24) can be written as a product of the form

K̂ = ζ̂cζ̂0ζ̂d , (38)

where

ζ̂c = e1/2a
†Ca†

,

ζ̂0 = e1/2γrR0γc

(
R0 =

(
(R0)11 0

0 − ˜(R0)11

))
, (39)

ζ̂d = e1/2aDa .

The matrices associated with ζ̂c, ζ̂0, ζ̂d are, respectively,

Zc =
(

1 C
0 1

)
,

Z0 =
(

(z0)11 0
0 (z0)22

)
(z0)ii = e(R0)ii (i = 1, 2), (40)

Zd =
(

1 0
D 1

)
.

The matrices C,Z0,D can easily be obtained if the ma-
trices associated with K̂, K, are known. Using the multi-
plication law K = ZcZ0Zd, the result is (ref. [10])

(Z0)22 = K22 D = K−1
22 K21 C = K12K

−1
22 . (41)

Using this theorem, it is easy to compute matrix elements
of the type 〈0|akK̂a†h|0〉, 〈0|aiajK̂a†ha

†
k|0〉 etc. The results

are

〈0|akK̂a†h|0〉 = (Z022)
−1
hk 〈0|K̂|0〉 , (42)

〈0|aiajK̂a†ha
†
k|0〉 =

[−CjiDhk+(Z011)jh(Z011)ik−(Z011)jk(Z011)ih]〈0|K̂|0〉 .
(43)

The last matrix elements are the ones we need to consider
states like 0−, 2±, .., etc. We consider eq. (42) for k = h.
We need

B′′(zp, zq) = (zpzq)Ns/2〈0|akŴ ′a†k|0〉 , (44)

with Ŵ ′ given by eq. (29). Using the relation (42), to-
gether with the expression for the matrix W ′ (eq. (30))
associated with Ŵ ′, we obtain

B′′(zp, zq) = szpzq(−z2
pz

2
qXW11X

−z2
pXW12 + z2

qW21X +W22)−1
kk

×[det(−z2
pz

2
qXW11X−z2

pXW12+z2
qW21X+W22)]1/2. (45)

The matrix elements B of eq. (14) are then given by

B =
C

2Jk + 1

×
∑
Mk

(2πi)−2

∫ 2πi

0

dαpdαqB′′(zp, zq)/(zpzq)A , (46)
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withMk being the value of the z-component of the angular
momentum for the single-particle state k. Straightforward
evaluation of the right-hand side of this equation requires
a large number of inversions and determinants. In the case
of an odd number of particles, we use a direct evaluation
of eqs. (45) and (46). Again, for large β, all W matri-
ces involved in the evaluation of (45) grow exponentially
and a prescription must be given to deal with this prob-
lem. The solution implemented in this work, makes use of
the factorization theorem, recalled at the begining of this
subsection, applied to the operator Ŵ = Ŵ (b)Ŵ (a). In
practice Ŵ (a) is the evolution operator from 0 to β/2 and
Ŵ (b) is the evolution operator from β/2 to β, to optimize
the decomposition. Then (see eq. (29))

Ŵ ′ = Ĉ†P̂pŴ (b)Ŵ (a)P̂qĈ = Ŵ (b)′Ŵ (a)′ . (47)

The matrix elements B′′ are computed in terms of the as-
sociated matrices of Ŵ (b,a)′ rewritten using the factoriza-
tion theorem. The result for the matrix elements in terms
of the associated matrices of Ŵ (b) and Ŵ (a) is written in
the following form:

B′′(zp, zq) = zpzq|1 − z2
pW

(b)−1
22 XW

(b)
12 |1/2

×|1 + z2
qW

(a)
21 XW

(a)−1
22 |1/2

×|1 +D(b)C(a)|1/2|W (b)
22 |1/2|W (a)

22 |1/2
×[
W

(a)−1
22 (1 + z2

qW
(a)
21 XW

(a)−1
22 )−1(1 +D(b)C(a))−1

× (1 − z2
pW

(b)−1
22 XW

(b)
12 )−1W

(b)−1
22

]
kk
, (48)

with D and C given by

D(b) = (−z2
pXW

(b)
12 +W

(b)
22 )−1(−z2

pXW
(b)
11 +W

(b)
21 ) , (49)

C(a) = (z2
qW

(a)
11 X +W

(a)
12 )(z2

qW
(a)
21 X +W

(a)
22 )−1 . (50)

The reason for rewriting B′′ in this complex form is that
it is numerically rather stable. Each factor behaves much
better than the corresponding product, and moreover, it
is not difficult to take the square root of the determinants
without having to recompute the sign for every zp and zq
(as the numerical computation of the determinant, as it
is stands, would require). The method we have used in
this case is the following ( note first that eq. (48) holds
for any W (a) and W (b)). If we set W (a) = 1 in eq. (48)
and zq = 0 in eq. (31), we immediately obtain that the
eigenvalues of W (b)−1

22 XW
(b)
12 are two-fold degenerate (see

also the discussion following eq. (34)). So in taking the
square root of |1 − z2

pW
(b)−1
22 XW

(b)
12 |, in eq. (48), we take

one eigenvalue for every degenerate pair. Similarly, one
can apply the same argument to |1 + z2

qW
(a)
21 XW

(a)−1
22 |

(cfr. eq. (31) for zp = 0). To take the square root of |1 +
D(b)(z2

p)C
(a)(z2

q )| let us prove first that the eigenvalues of
DC are degenerate. Consider the matrix elements

v = 〈0|ζ̂dP̂ ζ̂c|0〉 P̂ = zN̂ ,

where the operators ζ̂d,c are built from the matrices D(b)

and C(a) using eq. (40) (v is a polynomial in the fugacity
z). Using eq. (27) for the vacuum expectation values, we
have

v = zNs/2|Zd

(
z 0
0 1/z

)
Zc|1/22,2 = |1 + z2D(b)C(a)|1/2 .

The eigenvalues of DC must therefore be degenerate.
Again to take square root of |1 + DC| we take only one
eigenvalue per doublet. This recipe takes care of the in-
trinsic ambiguity of the square root of the 1st, 2nd and
3rd determinant in eq. (48). However we still have to eval-
uate two more square roots of a determinant in eq. (48).
In order to remove this remaining ambiguity we argued as
follows. In eq. (48), let us set zp = zq = 0 in the determi-
nants only. We obtain the product

|1+D(b)(zp=0)C(a)(zq=0)|1/2|W (b)
22 |1/2|W (a)

22 |1/2 = |W22|1/2.
Since we can take care (by eliminating one eigenvalue in
each pair of degenerate eigenvalues) of the ambiguity in
the first determinant we rewrite the 4th and the 5th square
root of determinants in (48) as

|W22|1/2|1 +D(b)(zp = 0)C(a)(zq = 0)|−1/2 .

We are still left with the ambiguity in |W22|1/2 but this
is equal to 〈0|Ŵ |0〉. Thus we only have to fix an overall
sign for this last matrix element. This vacuum expectation
value has also been studied in ref. [1] where a recipe was
given for the determination of its overall phase. In the
following subsection we shall re-examine this issue and
clarify a missing point in the sign recipe given in ref. [1].

2.3 The sign of the vacuum contribution

A basic shortcoming of the generalized quasi-particle for-
malism is that the sign of the vacuum expectation value
〈0|Ŵ |0〉 is left undetermined. This is of course not a prob-
lem if Ŵ is the exponential of a Hermitian Hamiltonian.
However, in a functional integral Ŵ is not Hermitian and
the phase of the vacuum expectation values must be fixed.
In ref. [1] the sign of the vacuum expectation value was
fixed by noting that it is the zero particle number con-
tribution in the grand canonical partition function, which
can be rewritten as

trgc[eαN̂Ŵ ] = 〈0|Ŵ |0〉f(z) . (51)

The function f is a polynomial in z = eα (ref. [1] eqs.
(41)-(45)) that can be determined without any sign am-
biguity. The recipe given in ref. [1] is simply to compute
the sign of the vacuum term from eq. (51) as a ratio for
a particular value of the fugacity after its modulus is cal-
culated from its determinant 2. In ref. [1] was shown that

2 It should be mentioned that one of the criteria for numeri-
cal stability is precisely |s| = 1 to some accuracy, as determined
by eq. (51)
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the eigenvalues of W come in pairs the type e±λ and that
the grand-canonical trace is given by (let us take z = 1)

trgcŴ =
∏
r

(eλr/2 + e−λr/2) , (52)

(the product is over different pairs). The above expres-
sion has a phase ambiguity (the matrix W is 2Ns × 2Ns),
for the knoweledge of W gives eλ and e−λ but not e±λ/2,
which is defined up to a sign. In the calculation discussed
in ref. [1] this sign ambiguity is removed using the fact that
the ±λ values have small imaginary parts. The fact that
these imaginary parts are small can qualitatively be un-
derstood with the following argument. In the functional
integral W = WN ...W1; if we consider static values of
the integration variables, W becomes the exponential of
a Hermitian matrix and therefore its eigenvalues are real
and positive and one can choose real λ values. Moreover,
the λ values are also degenerate (these degeneracy is due
to the time-reversal invariance of the quadrupole force, as
in the familar Nilsson model). We therefore must assign
the same arbitrary multiple of 2π to the imaginary part of
the degenerate λ values, since the trace given by eq. (52)
is positive. In the Monte Carlo calculation, the matrices
Wn vary with the index n and the degeneracy of the λ
values is removed and they are no longer real. However,
the time-reversed λ values are still recognizable since the
imaginary parts are small and the real parts are close to
form degenerate pairs. We therefore give the same arbi-
trary number of 2π to the imaginary parts of the (almost)
degenerate λ. In practice, since they are small, we use the
prescription to define all phases of λ values between −π
and π. In the code used in this work, a warning message
is printed if the largest imaginary part of λr’s exceeds 1.
No such cases were obtained for values of β discussed in
this work.

In principle a rigorous way to determine the proper
imaginary part of λr/2 could be done in the following
way: consider the β dependence of each λr (in practice
since the imaginary part is small only few values of β
should be necessary); every time (as a function of β ) an
imaginary part increases and approaches π linearly ( or
−π) its imaginary part should be kept and not readjusted
so that it is in the interval −π,+π.

Another way could be to compute the grand-canonical
partition function considering only the first n evolution
operators for n = 2, .., Nt, in order to check whether the
phase rule given above for the eigenvalues λ agrees with
the behavior of the grand-canonical partition function as
a function of n. In case a disagreement is found, the phase
of one the λ’s should be changed by 2π. Perhaps the most
practical way to check the phase rule given above is to
apply the method, given in section 2.2, about the de-
composition of the evolution operator W = W (b)W (a).
The factors are the evolution operators in the time in-
terval β/2, β and 0, β/2, respectively. We have shown
that W22 = W

(b)
22 (1 + D(b)(z = 0)C(a)(z = 0))W (a)

22 .
From this expression we can obtain the square root of
det(W22) in terms of the the square roots of det(W (b)

22 )
and det(W (a)

22 ) (as discussed in the previous subsection

there is no sign ambiguity in the evaluation of the square
root of det(1 +D(b)(z = 0)C(a)(z = 0)) ). The sign of the
square roots relative to the a and b vacuum expectation
values is statistically better defined, since β is one-half
of the original value, using the phase rule given before.
In principle, this recipe can be iterated until the value
of β is small enough such that the above phase rule is
mathematically exact. We actually performed a test of
this method by evaluating the sign of the square root of
|W22| using eq. (51) (for z = 1) and by evaluating the sign
using the decomposition formula just described. We took
about three thousand evolution operators for the pairing-
plus-quadrupole model, applied to 166Er. First the sign
was determined by simple application of eq. (51) with the
left-hand side evaluated with the phases of the λ’s between
−π and π. Then the sign was determined using the factor-
ization of W22 just given above. The sign of the individual
vacua was again determined using eq. (51) with the same
phase prescription for the eigenvalues of W (b) and W (a).
No discrepancy was found between the two methods. If a
single discrepancy was obtained we would have repeated
the decomposition into smaller and smaller values of β
untill the phase rule would have been satisfied. This was
done at β = 2 in order to check whether the simple phase
rule is statistically satisfied in the other cases discussed in
the next section.

3 A Monte Carlo calculation

As an example of the formalism described in the previous
section we considered the pairing +quadrupole model for
the Jπ = 0+ state of 166Er and the Jπ = 9/2−, 13/2+

states of 165Er. The single-particle basis, energy levels,
quadrupole and paring forces are taken from ref. [6]. The
matrix elements B of eq. (9), to be computed in the case
of two particle types are

B = 〈ψ, J,M, π,N,Z|e−βĤ+αnN̂n+αpN̂p |ψ, J,M, π,N,Z〉
× e−αnN−αpZ =

1
2J + 1

×
∑
M

〈ψ, J,M, π,N,Z|e−βĤ+αnN̂n+αpN̂p |ψ, J,M, π,N,Z〉

×e−αnN−αpZ . (53)

The Hubbard-Stratonovich transformation applied to the
pairing+quadrupole Hamiltonian with both neutrons and
protons gives

B = NnNp

∫ Nt∏
n=1

(
∏

τ=n,p

dφ(τ)
xn dφ(τ)

yn

×
2∏

a=−2

dσan) e−
ε
2k

∑
an σ2

an−ε
∑

τ Gτ

∑
n(φ(τ)2

xn +φ(τ)2
yn )

× e−
∑

τ=n,p(βGτΩτ/2+ατNτ ) × 1
2J + 1

×
∑
M

〈ψ, J,M, π,N,Z|Û (n)Û (p)|ψ, J,M, π,N,Z〉, (54)
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where Nn = N and Np = Z; the label τ identifies either
neutrons or protons. The evolution operator in the above
equation is the product of the evolution operator for the
neutrons and the one for the protons. As before we per-
form the sum over the Ĵz quantum number, M , in order
to eliminate spurious angular momentum components in
the integrand of (54).

We have tested the computer program by first consid-
ering a pure pairing model without the quadrupole inter-
action and with all single-particle energies equal to each
other. The total number of single-particle states was fixed
to 40 for both neutrons and protons. The strength of the
interaction was set to G = 0.1MeV for both particle types.
For 20 neutrons and 20 protons we reproduced the energy
of the ground state within the statistical error (β = 2.5).
Similarly for 19 neutrons and 20 protons the program was
succesfully tested.

Going back to the full pairing+quadrupole model, the
trial states are states with both neutrons and protons de-
grees of freedom. For an even-even nucleus, (0+) one can
take

|0+〉 = |n, 0+〉|p, 0+〉 +
∑
J

bJ [|n, J+〉 × |p, J+〉](0) + ... ,

with the trial state formed by coupling neutrons and pro-
tons to angular momentum (parity) Jπ = 0+. In our sam-
ple calculation for 166Er only the first term was consid-
ered. For the odd-neutron, even-proton case we took for
the trial state

|J,M, π〉 = a†JM
(n)|n, 0+〉|p, 0+〉 .

The |τ, 0+〉 is of type (11) with all fi = 1 in eq. (12) for
all subshells.

The calculation of the functional integral in eq. (54)
was performed using the Gaussian Path Method (ref. [12]).
Actually, in order to reach reasonable statistical errors, a
much more refined version of the method which we discuss
below, is implemented. The idea behind the Gaussian Path
method is the following. Let us rewrite schematically the
functional integral as

B =
∫

dv eS(v) ,

where v are the integration variables, and eS(v) is the inte-
grand. S(v) is called the effective action. S(v) is expanded
up to quadratic terms around the maximum (the mean-
field) v̄ and gives the approximate effective action S(v)a

S(v)a = S(v̄) + 1/2(̃v − v̄)M(v − v̄) . (55)

We use the matrix notation and M is the matrix of the
second derivatives of the effective action with respect to
the integration variables, calculated at the mean-field val-
ues v̄. Then we rewrite

B =
∫

dv eSa(v)eS(v)−S(v)a , (56)

and we compute the ratio of integrals

[ ∫
dv eSa(v)

]−1

B =

[ ∫
dv eSa(v)

]−1 ∫
dv eSa(v)eS(v)−S(v)a , (57)

which is the expectation value of eS(v)−S(v)a .
Since the integrand in the functional integral is in-

variant with respect to rotations, we prefer to work with
the Fourier components of the integration variables, since
symmetry requirements need to be taken into account
when using such variables. We work in the intrinsic sys-
tem by selecting the 0-mode Fourier components of the
deformation variables in the intrinsic frame. The intrinsic
frame is defined as that frame for which the time aver-
age of the Cartesian (not spherical) variables σa is zero at
a = −2,−1, 1. The same is done to take into account the
gauge symmetry of the pairing fields.

If the approximation S(v)a is a good approximation to
the exact effective action we expect the Monte Carlo inte-
gration to converge reasonably rapidly, if not, a large num-
ber of samples are needed. For the method to be meaning-
ful, the maximum of S(v) should be unconstrained, i.e. the
expansion should be carried out around the highest value
of S throughout the integration volume. The variables v
are the time-dependent fields σ and φx, φy considered in
the previous sections. We therefore expect, on very general
grounds, that the mean-field is time-dependent and not
static. We found that a static mean-field for our problem
does not exist. This is very surprising since the Hartree-
Bogoliubov mean-field is static 3. The Hartree-Bogoliubov
mean-field can be obtained only if time independence is
enforced (strictly it is not a maximum for the effective
action). Using time-dependent mean-fields one can pro-
ceed to compute the matrix M . We have done so with
the following considerations, since the calculation of the
full matrix is expensive. We assumed that only the low-
est Fourier frequencies of the time dependent variables
σ(tn), φx(tn), φy(tn) affect that integrand. Therefore, in-
stead of computing the second derivatives against the time
dependent variables, we compute the second derivatives
against their Fourier transforms. Typically we take up
to 8 or 9 modes for all fields. We found that there is a
very strong interplay between shape and pairing degrees
of freedom. In previous works the GPM has been imple-
mented only by constructing approximations to the matrix
M (strictly M needs not to be the matrix of the deriva-
tives). In all cases a crude approximation to M was used,
we still could compute the functional integral with a statis-
tical error of about 10%, but not in the case of the pairing
plus quadrupole model. A rather accurate matrix M is

3 The Hartree-Bogoliubov mean-field can be obtained in cor-
respondance of the maximum of the Grand-Canonical partition
function. In this work we deal with matrix elements, rather
than partition functions, and therefore the identification of
the mean-field with the Hartree-Bogoliubov mean-field is only
qualitative.
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needed. Fortunately the computation of M lends itself to
be distributed over any number of computers (up to the
total number of matrix elements to be calculated), so the
calculation can be performed despite the large number of
matrix elements.

Qualitatively we distinguish 3 regions in the integra-
tion domain. The near mean-field region where the Gaus-
sian approximation of eq. (55) is accurate; the far away re-
gion where the whole functional integral is dominated by
the Gaussian weight of the Hubbard-Stratonovich trans-
formation and the intermediate region of the integration
variables. The far away region does not contribute to the
functional integral since it is very unlikely to occur in the
calculation and we are left with the near mean-field and in-
termediate region. Also the mean-field region is unlikely to
occur (in a large dimensional space it has a very small vol-
ume). Since we compute expectation values of eS(v)−S(v)a ,
using eSa as a probability density, the intermediate region
gives the largest contribution to the variance, since there,
the approximation of eq. (55) is less accurate (anharmonic-
ities can play a large role). To smooth out these fluctua-
tions, in some test cases not discussed here, instead of the
matrix M , we use a rescaled matrix rM with r smaller
but close to 1. Thus the sampled values of eS(v)−S(v)a are
smaller in the intermediate region but hardly affect the
ratio in the near mean-field region. The majority of the
sampled values fall in the intermediate region. One can
raise the following objection: both eS(v) and e

S(v)
a are ex-

ponentially small in the intermediate region but their ratio
can be very large or very small giving a very large con-
tribution to the variance. The answer to this objection is
precisely the rescaling we mentionned, which gives smaller
ratios.

There are some distinct advantages in using this inte-
gration method. It is rather easy to sample eSa and the
integration points generated in this way are statistically
fully independent. Moreover the computation of the ratio
in eq. (57) can be rigorously divided equally over several
computers thus effectively increasing the speed of the cal-
culation.

The method described gives the value of the full
functional integral B. The energy levels of the pair-
ing+quadrupole Hamiltonian are then obtained using the
expression

−∂β lnB = −[lnB(β + δβ)− lnB(β)]/δβ . (58)

Strictly, δβ should be small, but it can be taken large
since at low temperatures B is essentially the exponential
of −βEJπ.

The calculation with the full basis, used in ref. [6], is
computationally heavy (few computers were used), but it
can be done. With the full basis we evaluated the energy
by calculating B at β = 1.0 and β = 2.0. In the calculation
we took ε = 0.03. We obtained the following values for the
energies. For Er166 , 0+ state, E = −308.77 ± 0.10 MeV
For Er165, E(9/2−) = −303.38 ± 0.11 MeV, E(13/2+) =
−303.34±0.13 MeV and E(5/2−) = −302.73±0.12 MeV.
Of course, it is not the absolute values of the energies
which matter, but rather the separation between the lev-

els. At this stage we do not express any judgement about
the validity of the pairing + quadrupole model in repro-
ducing spectra for the following reasons. First of all, we
do not know how accurate our ansatz for the trial wave
functions is: at these temperatures mixture with excited
states of the same angular momentum and parity can oc-
cur. Presumably a more complicated ansatz is necessary if
we choose to use only relatively large temperatures. If we
choose to keep these ansatzs the calculations have to be
performed at reasonably large β values. At the moment we
are limited by the CPU time necessary. The above num-
bers have been obtained with Monte Carlo runs ranging
from about 6000 to 14000 data points. The percentage of
negative contributions in the integration is kept to a few
percent by proprerly selecting both neutron and proton
chemical potentials as discussed in ref. [13].

4 Conclusions

The formalism and the calculations described in this work
prove that spectral properties of nuclear models can be
studied in an exact way using Monte Carlo methods.
These techniques might be very useful in testing the valid-
ity of model Hamiltonians using their lowest energy levels
of given angular momentum and parity. An obvious im-
provement will be to consider a better ansatz for the trial
states with good angular momentum and parity (we took
the simplest ansatz from a computational point of view)
and/or implement the method at very low temperatures
so that the ground state energy with a given Jπ can be un-
ambigously calculated. A better ansatz for the trial states
would allow the computation of the ground-state energy
for a given angular momentum and parity, without having
to consider very low temperatures.

We found no difference in behaviour between cases
with an even and an odd number of particles, as far as the
sign problem is concerned. Also, to the author’s know-
eledge, no Monte Carlo calculation with the full single-
particle basis of ref. [6], at these temperatures, has been
carried out before. We were able to perform such a calcu-
lation thanks to the computational speed, compared with
the Metropolis method, of the Gaussian Path method as
described in this work.
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